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After making the laboratory approximation of small magnetic Reynolds number, 
the steady, axisymmetric and purely azimuthal velocity profile that in principle 
can be generated in an incompressible viscous electrically conducting fluid con- 
tained in a fixed infinitely long circular cylinder by a magnetic field transverse 
to the cylinder axis and uniformly rotating with low frequency is subjected to 
infinitesimal axisymmetric perturbations. The principle of the exchange of 
stabilities is assumed to hold and the marginal-stability problem becomes a 
sixth-order eigenvalue problem involving the magnetic Taylor number and the 
axial wavenumber. An asymptotic analysis, based on the assumption that the 
magnetic Taylor number is large, and using solutions of the comparison equation 
d6y/dz6 = zy, is presented in order to obtain first approximations to the neutral- 
stability curves of the first and second eigenmodes, and compared with the re- 
sults of direct numerical integration. It is found that a t  the onset of instability 
the secondary motions have a multi-cell structure, the motions in the region, 
near the cylinder wall, of adversely distributed angular momentum driving 
through weak viscous action the cells in the interior. 

1. Introduction 
In  the last decade there has been considerable theoretical interest shown in the 

rotation by electromagnetic methods of liquid metals in cylindrical containers. 
The use of liquid sodium as a coolant in fast breeder nuclear reactors has created 
an interest in the possibility of centrifugal gas and particle separation by the 
rotation of magnetic fields. A description of an electromagnetic rotary-flow 
generating device, designed to assess the merits of such an idea and based on the 
experiments of Hobdell & Salzano (1970), has been given by Hayes, Baum & 
Hobdell (1971). It is in this field that the motivation for the present investigation 
lies, but similar magnetohydrodynamic configurations are encountered in deter- 
mining the resistivities of reactive liquid metals and alloys a t  high temperatures 
(Ozelton & Wilson 1966; Ayers, Taher & Faux 1971), and in the larger scale 
induction stirring in the steel manufacturing process (Sundberg 1971 ; Linder 
197 1). Large-scale metallurgical applications of this particular branch of mag- 
netohydrodynamics have accounted for the bulk of the published material, both 
empirical and theoretical, including the prolific contribution of Kapusta and 
his co-workers in the Soviet Union, that has recently been critically reviewed by 
Dahlberg (1972). 
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Moffatt (1965) was the first t o  construct a mathematical model in which an 
incompressible electrically conducting viscous fluid contained in a fixed insulating 
infinitely long circular cylinder is rotated by a magnetic field rotating uniformly 
in a plane perpendicular to the cylinder axis. Making the laboratory approxima- 
tion of small magnetic Reynolds number, he showed that if the frequency of 
rotation of the magnetic field is sufficiently high the fluid can, in principle, rotat'e 
as a rigid body inside a viscous boundary layer adjoining the cylinder walls. 
On the other hand, Smith (1964) determined the cubic nature of the purely azi- 
muthal fluid velocity profile in the somewhat similar problem of a fixed small 
magnetic field in which the cylinder containing the fluid rotates with small 
angular velocity. More recently Dahlberg (1972) has shown that for a slightly 
modified Moffatt model, provided that the magnetic field strength is sufficiently 
small to ensure the validity of the laboratory approximation, a steady, axisym- 
metric and purely azimuthal velocity profile can be generated by rotating the 
field at any frequency. Furthermore, as is to be expected from the skin effect, 
for fixed field strength, the Moffatt rigid-body angular velocity decreases as the 
rotation frequency of the field becomes very large. 

From the practical point of view of a centrifuge it is important to know whether 
or not a state of laminar azimuthal motion could be maintained. Indeed, both 
the low frequency and high frequency velocity profiles may become unstable and 
secondary motions develop before significant magnetic field strengths and rota- 
tion frequencies are reached. Whether the model describes a centrifuge or a mixer 
depends of course on its stability characteristics. Kapusta, Dremov & Bartoshuk 
(1971) have attempted a linear stability analysis of the low frequency profile. 
However, Dahlberg (1972) has cast doubt on their methods of analysis. It is the 
aim of this paper to determine the onset of instability, when the low frequency 
model is subjected to infinitesimal axisymmetric disturbances, and to describe 
the consequent secondary motions using an asymptotic analysis to support 
the results of direct numerical integration of the perturbation equations. 

2. The linear stability problem 
2.1. The equilibrium conjiguration 

Suppose that an incompressible fluid of constant density p, kinematic viscosity 
v and electrical conductivity a i s  contained in the interior (Y < u) of a fixed insula- 
ting cylindrical container whose inner and outer boundaries correspond to r = a 
and r = ha ( A  > I) ,  respectively, in cylindrical polar co-ordinates ( r ,  8, x ) .  A mag- 
netic field is applied perpendicular to the cylinder axis and is made to  rotate with 
uniform angular velocity w .  The source of this field can be idealized by longi- 
tudinal surface currents a t  r = ha, regarded perhaps as the inner surface of a 
stator, and then the magnetic field B can satrisfy 

B,(ha-,B,x) = B,cos(B-wt), B,(r,8,z) = 0 (0 < r < ha) .  (2.1) 

The exterior region Y > ha is assumed to have infinite magnetic permeability p 
and so have no effect on the inner region r < ha. 

The effect of the rotating magnetic field is to induce currents in the conducting 
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fluid and so create a Lorentz force that will generate fluid motion. A dimensional 
analysis of the problem indicates that there must be three non-dimensional 
numbers that quantify the applied magnetic field strength and the rotation 
frequency and specify the particular fluid being rotated. For convenience the 
Hartrnann number M ,  a ' second ' magnetic Reynolds number 22; and the rnag- 
netic Prandtl number pm, defined by 

where 7 = (pa)-l denotes the electrical resistivity, will be chosen. Once these 
three quantities have been specified the fluid velocity u and the magnetic field 
B can, in principle, be obtained from the governing magnetohydrodynamic 
equations: 

1 

111 
= - V p + - V  x B x B-pvV x V x U, (2.3) 

= V x (U x B ) - q V  x V x B (Y < a), (2.4) 

V x B  = 0 ( a  < r c ha), (2.5) 

V . U  = 0 ,  [ V . B  = 01, (2.6) 

in a fixed laboratory reference frame, where p denotes the kinetic pressure and 
mks units have been used. 

Let % denote a typical fluid velocity. Then the ordinary magnetic Reynolds 
number 

R, = %!a/? (2.7) 

is a measure of the relative importance of the induction and diffusion terms in 
(2.4).  In the laboratory R, is small and neglecting the effect of the fluid motions 
on the magnetic field decouples the Navier-Stokes and induction equations. 
By solving for B = (Bp7 B,, O ) ,  ensuring continuity with the potential field in the 
insulator and noting that the curl of the Lorentz force is independent of 0 and t ,  
Dahlberg (1972) shows that the fluid velocity can be purely azimuthal and given 
bY 

M2ur [I - ( r / ~ ) ~ ~ n f ~ ]  ($Rz)2" 
161DI2 n=O (2n+ 1) (2n+ I ) !  [(n-t 1 )  !I2' c ug = - ( 2 . 8 ~ )  

( 2 . 8 b )  

where JDJ denotes the modulus of the complex quantity 

D = Jo{(iRz)*} - J,{(iR;J*} (2.9) 

and Jn is the Bessel function of the first kind of order n. This result depends 
crucially on the assumptions of x independence and R, < 1, this latter condition 
necessarily imposing a restriction on the magnitude of the magnetic field. The 
stability of the cubic velocity profile [cf. (2.8b) and (2.9)] resulting from the 
assumption of small R; is discussed in the remaining sections. 

38-2 
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2.2. The axisymmetric perturbation equations and boundary conditions 

Let u, SB and p25 be perturbations, whose squares and products are negligible, 
in the velocity, magnetic field and kinetic pressure respectively of the two- 
dimensional equilibrium state with azimuthal velocity [of. (2.8 b ) ]  

V ( r )  = +@Fbr[l- (r/a)2]. (2.10) 

Having made t'he approximation R, < 1, the magnetic perturbation must 
satisfy 

(2.1 1 a )  (a/at+rV x V x ) S B  = 0 (0 < r < a), 

V x 6B = 0 ( a  < r < ha), (2.1 1 b)  

V.SB = 0, (2.12) 

being continuous across the boundary r = a, and if the magnetic field components 
B, and B, a t  r = ha retain their equilibrium values [cf. (2.1)] it is easily seen that 

SB = 0 (0 < r < ha), (2.13) 

from which it immediately follows that S(V x B x B/p), the perturbation in the 
Lorentz force, vanishes throughout the fluid. As Moffatt (1965) has pointed out, 
the linear stability problem is then a fluid-dynamic one since the role of the 
magnetic field to this order is to establish the equilibrium profile. 

The linearized Navier-Stokes equations governing axisymmetric disturbances 
are 

where 

and the continuity equation reduces to 

au, u, a.u, -+-+- = 0. 
ar r az 

(2.14) 

(2.16) 

(2.16) 

(2.17) 

(2.18) 

If the perturbations are analysed into normal modes so that 

uo = G ( r )  cos (kx)  ept ,  

i% = W ( r )  cos (kz) e p t ,  
(2.19) 

where k is an axial wavenumber and p is a frequency that can be complex, then 
substitution into (2.14)-(2.16) and (2.18) and elimination of W gives 

u, = P(r)  cos (kz )  e p t ,  

u, = H ( r )  sin (kz )  ep t ,  

2lc2 
V vr (UD, - k2 -2) (DD, - k2) F = - VG, (2.20) 
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where 

(2.21) 

JCH = -D,F, (2.22) 

d l  
D ,  = -+- 

dr’ dr r’  
a D = -  (2.23) 

Introducing the non-dimensional variables 

x = ria, a = ka, q = pa2/v, (2.24) 

and assuming that the principle of the exchange of stabilities is valid, the mar- 
ginal-stability equations governing F and G become 

(DD, - F = a3Ti( 1 - x 2 )  C, 

(DD, - a,) G = Tk( 1 - 2x2) F ,  

where T,, is a magnetic Taylor number defined by 

M2a2w M2RZ wa4Bi Tk = - = - = - 
8lJ gP, 8PPV27’ 

(2.25) 

(2.26) 

(2.27) 

and D and D, now denote derivatives with respect to x. 
With fixed wavenumber a and a set of six boundary conditions, (2.25) and 

(2.26) constitute a sixth-order linear eigenvalue problem for T,, and as in other 
problems of hydrodynamic stability, the appearance of v - ~  in the definition of the 
magnetic Taylor number suggests that Tmh can be considered as a large parameter. 
At the fluid-solid insulator boundary x = 1 clearly the no-slip conditions must 
be satisfied, so that 

F = D F = G = O  at x=l. (2.28) 

However, the exact nature of the boundary conditions to be applied a t  x = 0 is 
not immediately apparent. In  order to clarify this situation, the form of the 
solutions near z = 0 can be determined on the assumption that Ti is large and 
a is of order unity. Defining the scaled variable 

y = c ~ T ~ x ,  (2.29) 

equations (2.25) and (2.26), to leading order, become 

(DD,),F = 0, DD, G = F/a,  (2.30) 

respectively, having general solution 

F = 2a[(4A2 -t 3A,) y + 1 2A,y3 + A,/y + 4A,y In y], (2.31) 

G = A ,  y + A ,  y3 + A y5 + A,/y + A ,  y In y + -4, y3 In y, (2.32) 

where the Ai (i = 1,2,  ..., 6) are arbitrary constants. At x = 0 (i.e. y = 0) the 
azimuthal velocity component must vanish by symmetry, implying that A, = 0. 
A finite and in fact zero radial velocity at  x = 0 implies that A ,  = 0, and sym- 
metry of the axial velocity, so that DH = 0, implies that A ,  = 0. These restric- 
tions on 3’ and G are equivalent to 

F = D z F = G = O  at x=O. (2.33) 
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Hence (2.25) and (2.26) together with boundary conditions (2.28) and (2.33) 
constitute the axisymmetric linear stability problem, and in the following section 
an asymptotic analysis is presented on the assumption that the magnetic Taylor 
number is large. 

3. As-ymptotic analysis 

If approximate solutions of the form 

3.1. Wh7BJ solutions and comparison equations 

P, GI = [ f ix, ~ $ 1 ,  g(x, T,+)I exp r i a 3 ~ i 4 4 1 ,  (3.1) 

where f and g are analytic functions of x and T;*, u is of order unity and Ti is a 
large parameter, are sought to ( 2 . 2 5 )  and (2.26), then the leading-order equations 
obtained after substitution imply that the function S ( x )  must satisfy 

(DX)6 = ( 1 - x2) (2x2- 1) .  ( 3 4  

As a result, there are clearly four transition points of the governing differential 
equations, but only those at x = 1/42 and x = 1 are of direct physical relevance. 
On passing through x = 1/42 the  character of the solution (3.1) changes since the 
right-hand side of (3.2) changes sign. On the other hand, the transition point at 
x = I corresponds to the ffuid-solid insulator boundary and so has a different 
role t o  play in the determination of the final solution. The underlying physical 
significance of these points is apparent on considering the Rayleigh discriminant, 
which for the velocity profile (2.10) is 

@(x) = - & M 4 ~ 2 ~ 3 ~ 3 (  I - x 2 )  ( 2 ~ ' -  1). (3.3) 

Then, in the range 1/42  < x < 1, X(x) can take real values [cf. (3.2)] and @(x) 
takes negative values, indicating that the region is one of adverse distribution 
of angular momentum, and therefore of possible dynamical instability. 

If the nature of the solution to (2.25) and (2.26) as it passes through x = I/ J2, 
having satisfied the boundmy conditions at x = 0, is determined and then 
matched with a suitable linear combination of solutions (3.1), X(x) will be effec- 
tively specified. However, it will be found that only for a discrete set of values of 
a2T, will this combination match with the solution satisfying the no-slip 
conditions a t  x = 1. The resulting estimates of a2T, will then provide a valuable 
comparison with the iiumericaily determined neutral-stability curves. 

In  order t o  examine the behaviour of the solutions in the vicinity of the 
transition points define 

= (I/z/S - x) /E ,  E = (WTk)-i'., (3.4) 

5 = ( x -  l)/€*, c* = ( 2a2Tm)-i-. (3.5) 

D'F = EF, D2G = CG (3.6) 

Then to the leading order in e and E* equations (2.25) and (2.26) become 

respectively. The cornparison equation is the same for both cases, atid the~&re 
an examination of the solutioiis of D6F = ZF for both large and small moduli 
of the complex variable z must be made. 
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3 .2 .  Xolufions in the vicinity of the transition points 

Using an argument involving Laplace integrals (cf. Duty & Reid 1964; Granoff 
& Bleistein 1972) the differential equation W E '  = zF can be shown to have 
contour-integral solutions of the form 

wlme the rj are infinite contours in the complex-s plane with end points in the 
'valleys of - s7, given by 

( 3 3 )  +nn-+ < args < +nn+&n (n = 0,1, ..,, 6). 

However, only six of these solutions are linearly independent since 

a i d  these are related since 

F. 3 fl ( z )  = e3niFj(ze5ni) ( j  = 1,2, ..., 6). 

It is a relatively straightforward matter, using the method of steepest descents, 
to obtain the leading term in an expansion of Fj(z)  for large 1x1. If I'l is chosen to 
be a path lying in the sector $n < args < $n, and a cut is inserted along 
arg z = l+n, Fl(z) has the asymptotic behavionr 

-[2(37~)a]-l~-1%exp(-+%~) for -$n < argz < $n, (3 .9a )  

for $n < argz < 1+-n (3 .9b)  

(cf. Duty & Reid 1964). 
The physical problem requires that for z real and positive and equal to 5 only 

decaying solutions are acceptable. From expressions (3 .9 )  the asymptotic be- 
haviour of the remaining solutions can be determined, and it is found that the 
only solutions becoming exponentially small as + CO, all others becoming 
unbounded, are Ir;, F2 and F7. Hence the required solution, without loss of gen- 
erality, can be written as the linear combination P = Fl +p2F2 +p, F7. The whole 
point of this analysis is to determine the behaviour of this solution as -+ - co; 
i.e. with z lying on the negative real axis. Since F4 and F5 both tend to zero and .F8 
and F6 are bounded as 6 + - 00, the constants B2 and p7 must be chosen so that the 
exponentially large contribution to Fl = - F2 - F3 - F4 - F5 -Po - P, in the 
sector @I < argz < Qn is removed. Choosing p2 = p7 = 1 then gives 

- [2(3n)~]- i~- i~exp[~ni -$z~exp(  -+in)] 

F cc ( - [)-i%COs [$( - [)$ - in] as 5 + - 00, (3.10) 

and this provides one ofthe boundary conditions on the WKBJ solution (3.1). 
As already mentioned, the problem in the vicinity of x = 1 is slightly different 

from that in the vicinity of x = 1/42. The asymptotic solution for large negative 
z equal to 6 [cf. definition (3,5)] must be linked with the series solution about 
5 = 0 that satisfies the no-slip conditions. Now for large and negative z lying in 
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the sector 3. < argx < $h only a bounded oscillatory linear combination of the 
functions Fj(z )  is acceptable. Without loss of generality, G can then be written in 
the form G = p3 F3 + p4F4 -I- P5 F5 + F6, and from the leading-order equations 
after making the substitutions (3.5), the no-slip boundary conditions (2.28) are 
readily shown to be equivalent to 

G = D2G = D3C: = 0 at c= 0. (3.11) 

In order to apply these conditions (3.11) consider the functions q j ( z )  defined by 

(3.12) 

wherethepathof integrationis thesemi-infiniteray given by args = +-j. Although 
these functions individually do not satisfy D6F = zF,  certain combinations of 
them obviously do, for example, q4(z) - q,(z) = F,(z) [cf. (3.7)]. After noting that 
the functions q j ( z )  are related in the same way as are the solutions Fj( z ) ,  ex- 
panding qi (z)  in an ascending power series in x and observing that qo(0) and its 
derivativesqg(0) and q1(1(0) are non-zero quantities, the boundary conditions (3.1 1) 
provide three linear algebraic equations for p3, p4 and p5 whose solution is 

, (3.13) p - -&Hi p4 = 1 +e~ni+eJ,*ni p5 ~ - - e$rri - e+i. 
3 -  

Since F4 and F5 are exponentially small for z large and negative, the resulting 
linear combination then indicates a solution of the form 

Gcc(-~)-~%cos[+?(- [ )Z+&r]  as g-t -a, (3.14) 

which constitutes the second boundary condition on the WKBJ solution (3.1). 

3.3. Approximations to neutral-stability curves 

Since the function S ( x )  in the exponent of solutions (3.1) is required to take 
real values in the range 1/42 < x < 1 define 

n n  

[( 1 - x2) ( 2x2 - 1)]* dx + B, 
S (x )  = J (3.15) 

where B is an arbitrary constant. Then expanding S ( x )  in ascending powers 
of x- 1/42 and 1 -x and using definitions (3.4) and (3.5) to express the leading 
term in the inner variables 6 and respectively gives 

$( - g)Z + BasTk, (3.16 a )  
(3.16 b )  a'Tk s(x) 21 { (1 + B)  Ti - 3 , ( - 1SF, 

where [(l - x 2 )  ( 2 ~ ' -  1)]idx 21 0.18834. 
I = L2 

If a solution of the form 
F ( z )  cc COS [.."kX(x)] 

(3.17) 

(3.18) 

is sought, the leading-order equations of the large-T, approximation to (2.25) 
and (2.26) indicate that G(x)  also has this form. Now matching at x = 1/42+ 
using (3.10), (3.16) and (3.18) determines the constant B, so that 

&T;B = - in. (3.19) 
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On the other hand, since (3.14) and (3.18) are proportionality relations, in the 
matching a t  x = 1 - the identity 

cose = (-l)mcos(m7T-@), (3.20) 

where m is an integer, must be used. The lowest positive value that a*Tib can take 
is obtained from (3.14), (3.18) and (3.20) with m = 1,  and the resulting approxi- 
matmion to the neutral-stability curve for the first axisymmetric mode is 

= 61~/7I or a2Tm N 8.5416 x loG. (3.21) 

Similarly, from (3.20) with m = 2, the approximation to the neutral-stability 
curve of the second axisymmetric mode is 

= 13n/7I or a2Tm N 8-8367 x lo*. (3.22) 

These curves are compared with those obtained by direct numerical integration 
of the marginal-stability equations in figures 1 and 2. 

4. Numerical results 
The eigenvalue problem defined by (2.25), (2.26), (2.28) and (2.33) is a two- 

point boundary -value problem and was solved by using a Chebyshev collocation 
method in which F and G are each represented by a finite series of Chebyshev 
polynomials. For 8 discussion of the basic principles of such a technique see 
Wright (1964) and Hurley, Roberts & Wright (1966). However, the essence of 
the method is the production of a set of linear algebraic equations for the un- 
known coefficientsof the Chebyshev series so that the whole differential boundary- 
value problem can be solved in one step. 

To avoid obtaining the trivial solution P = G = 0, a normalization condition 
F = 1 at x = 0.5 was substituted for the correct boundary condition F = 0 at 
n: = 1. Then for a specified wavenumber a and an initial estimate of the magnetic 
Taylor number Tm [cf. (3.21) and (3.22)] the modified problem was solved and 
the in general non-zero value of F at x = 1 obtained. The omitted condition was 
then used as a discriminant, and by approaching iteratively its first two positive 
zeros successive converging estimates of Tnz were derived. 

Calculations were performed using double-precision arithmetic on an ICL 
System 4-75 machine. Because of the nature of the resulting eigenfunctions 
it was found necessary to use polynomial approximations of degree at least 20. 
For a specific wavenumber a the iteration was terminated as soon as either the 
magnetic Taylor number or discriminant differed from its previous value by not 
more than lo-'. However, in practice, the actual difference was much smaller 
than ihis, as indeed was the magnitude of the discriminant. The results obtained 
for the first mode, using approximating polynomials of degree 20, were then 
checked by verifying that the irtst terms in the Chebyshev series were small, 
and by repeating the calculation with polynomials of degree 25. The correspond- 
ing magnetic Taylor number confirmed the significance of the first six digits, 
Higher order approximations gave further confirmation and were indeed con- 
sidered necessary for the determination of the second mode. 
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PIGUXE 1. The numerically calculated neutral-stability curve for the first mode (full line) 
and its approximation using the asymptotic analysis (brokon line). 

CI 

FIGURE 2. The numerically calcdated neutral-stability curve for the second mode 
(full line) and its approximation using the asymptotic analysis (broken line). 
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FIGURE 3. The ainplitudes of the radial eigenfunction 3' and azimuthal eigenfunction G 
of the first mode, normalized so that F = 1 at x = 0.6, a t  the onset of instability, for which 
T,, N 531811 and a, N 6.59. 

Repeating this procedure for va,rious values of cc produced the neutral-stability 
curves for the first and second axisymmetric modes of instability illustrated in 
figures I and 2. The critical values of the magnetic Taylor number and wave- 
number at the onset of instability for the first mode were then found to be 

T,, 2i 531811, a, 21 6-59, 
and for the second mode 

qLc _N 1.351 x lo', a, 2: 14.5. 

(4.1 

(4.2) 

The corresponding eigenfunctions for the first mode are illustrated in figure 3. 
Of particular interest is the form of the radial eigenfunction since this is propor- 
tional to the stream function that describes motion in planes through the cylinder 
axis. There are therefore three cells, the largest of which extends over half of the 
cylindrical region including the region predicted by Rayleigh's criterion [cf. 
(3.3)] to be dynamically unstable. The other two cells are then viscously driven 
in a dynamically stable region and consequently have small amplitudes. In  
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FIGURE 4. The function $(x) = e-lOzB'(z) for the second mode, normalized so that the 
amplitude of the radial eigenfunction P = 1 at z = 0.5, at the onset of instability, for 
which Tmc N 1.381 x lo7 and a, 2: 14.5. 

figure 4 the radial eigenfunction for the second mode is represented and indicates 
a, seven-cell structure, the relatively small amplitudes of the inner cells being 
particularly apparent. 

5. Concluding remarks 
First, although the asymptotic analysis presented in 8 3 is based on the assump- 

tion that aiTi  is large, while a is of the order unity, and the resulting estimates 
(3.21) and (3.22) indicate that a ) T i  2: 14.297 and 30.978 respectively, these 
values are sufficiently large for the method t,o aid and confirm a t  least some of the 
numerical calculations. 

Second, the velocity profile (2. lo),  whose stability has been investigated, was 
derived after making the laboratory approximation R, < 1. Taking a, the 
typical velocity in the definition of the magnetic Reynolds number [cf. (2.7)], as 
the maximum velocity implies that, for consistency, 

M2Rz  < 2443 .  (5.1) 

M2R2 < 7 2 9 . 2 5 ~ ~  (5.2) 

On the other hand, the numerical analysis suggests that instability may occur if 
the condition 

is violated. Takingp, = 1.51 x lO-'for mercury a t  20 "C, condition (5.2) becomes 
M2R: < 8.8 x indicating that in principle secondary flows could develop 
as a result of the adverse angular momentum distribution of the primary flow 
(2.10). However, if the cylinder radius a = 0*03m, p = 1.36 x 104kg/m3, 
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= 1.05 x 106S/m, v = 1.14 x 10-'m2/s, and q = 7.58 x 10-lm2/s condition 
(5.2) becomes 

(5-3) oB2 6 1-22 x 

if the angular frequency o is measured in rad/s and the magnetic field strength 
Bin tesla. If liquid sodium at 100 "C is the working fluid then N2RZ < 5-6 x 
implying that oB2 < 4-57 x 10-8. In  both cases, since w 21 100n rad/s in most 
applications, instability can occur at very small magnetic field strengths. 
Moreover, finite end-effects, neglected here, could be expected to enhance any 
secondary flow, and there is still the possibility that the axisymmetric modes are 
not the most unstable, thus restricting even further the applicability of the two- 
dimensional equilibrium low frequency theory to practical situations. 

I am very grateful to Professor P. H. Roberts for suggesting the asymptotic 
analysis presented above, and to Dr R. F. Burbidge for his valuable criticisms 
throughout the development of this work. 
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